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Relationships between certain types of absorption sets defined for the game problem of 
bringing a conflict-controlled motion onto a given set are considered. Investigation of 
these matters shows that an evasion strategy generally cannot be approximated by con- 
tinuous game position vector functions _ The contents of the present paper are directly 
related to studies [I- 91. 

1, One of the methods of investigating differential games is that described in P, 2. 
7 3. In these studies construction of the optimal strategies of the players entails the intro- 
duction of an ancillary extremal constructian bases on the notion of absorption. Absorp- 
tion is defined in various ways. depending on the class of problems under consideration. 
We shall cite the classification of the various definitions of absorption proposed by Kra- 
sovskii ; this classification will help us to define the subject of the present paper more 
clearly. 

We shall limit ourselves to the consideration of a linear differential homing game. 
Let the motion of the controlled system be described by the equation 

dx I dt = A (t).z: -j- B (t)u - C (t)u (1.1) 

Here z is the li -dimensional phase vector of the system; u, v are the vector controls 
of the first and second players ; A (t)? B (t), c (t) are coutinuous matrix functions of 
the corresponding dimensionalities. We assume that the realizations of the controlling 
forces of the players, tf, [t] and u [tf , are subject to restrictions of the form 

u Itl E P, u ItI E Q (1.2) 
where P, Q are closed, bounded, and convex sets in the corresponding vector spaces. 
In the phase space of the game EA we are given some convex and closed set M to which 
the first player strives to bring the point z [tl ; the second player, with the control u at 
his command, is not interested in the realization of the condition z it] E M. It is usu- 
ally assumed that neither player knows what the future behavior of his opponent will be, 
but that the game position p [t] = (t, 5 It]} realized at each instant t immediately 
is known to both. 

Let us define the basic classes of player strategies. This will enable us to introduce 
certain types of absorption sets into our discussion. 

The first calss of strategies consists of the program controls at the disposal of the play- 
ers, i.e. the arbitrary measurable vector functions u (t) and u ft) which satisfy restric- 
tions (1.2). We denote the sets of program controls of the first and second players by the 
the symbols U, and V,. 

The second class of player strategies consists of the continuous vector functions u = 
= u (t, z), u = u (t, 5) which satisfy the conditions u (t, I) E P, u (t, z) E 0. 
We denote the sets of such vector functions by the symbols Ij,and V,. 

Let us consider another ancillary class of player strategies. Let u = u (t, z), 
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ZJ 3 u (t, I) be vector functions satisfying the following conditions : the functions 
U (t, z), Y (t, z) are measurable in .# for each fixed xi; there exists a function L (t) 
summable over every fkite interval such that the foilowing inequalities (the Lipchitz 
condition) are fulfilled : 

II 24 P9 31) - u 07 52) II G L @I II Xl - 52 II 

II v (t7 31) - u (h x2) II G Jc (3) II 51 - 22 ;I 

and the inclusions 
n (G 5) E P, ZJ (t, =) E Q (4.3) 

hold for all values {t, x} . 
The sefs of vector functions r.4 = u (t , s) , u = u (t , X) satisfying these conditions 

are denoted by the symbols Xl,* and Vz*. By virtue of the Car&heodory theorem<pO]. 
p. 120) the pair of controls u( .) E IJ,*, v( - ) E Vz* generates a unique motion of 
system (1. lb 

Now let us introduce the notion of an approximation strategy. Let u = g (t, 5) be 

a function which associates the vector p = {t , 2) with a c-d set U (t , z) which 
satisfies the in~Zusion U (t, z) c P. We also assume that the function U = u (t , x) 
is semicontinuous above by inclusion with respect to the variable 5. The function 
u = u (t, x) enabks us to describe the following methai of forming the first play- 
ers’s controls, which is known as the “approximation strategy” f1$ 

Ler 6 > 0 be an arbitrary number (the interval of the approximation scheme); we 
choose an arbitrary vector u,, in the set U(t,, x0) which the fuuction U = U (t , 2) 
associates with the initial game position p0 = {to, x0} ; we then keep the &trot of 
the first player constant, u It] A u0 E U .(to, x0) within the half-interval 
[t,,, to i- 6). This constant control ‘of the first player paired with the arbitrary measur- 
able realization of the second player’s conaol determines the motion ,of the system over 
the time interval [to, to -k 6). At the instant t = to + 6 we associate the game 
position p = {t, + 6, x [t, + 6}) realized by that instant with the set U (to -/- 8, 
2 [to f al), choose an arbitrary constant control 

u ItI = U1 E u (k3 + 6, 3: Ito + Sl), 

which determines the motion over the next time interval It, -/- 6, to -k 26), etc. 
The notfou of the second player’s approximation saategy is introduced in similar 

fashion.The sets of approximation strategies of the first and second players tin be d&no- 
ted by the symbols Usand V,, respectively.. Thus, the set U,containa all the possible 
ways of forming the piecewise-constant controls of the first player ; the lqrgsr are defined 
by the functions U = U (t, 5) described above and correspond to all pmibie values 
of 6 > 0. 

The above classes of player strategies enable us to define the following types of absorp- 
tion sets. The first of these, namely the program action set WI (7, 6) is defined as 
the set of pMus w E E’ for which the following s&&i&on is fulfilhsd: for any second- 
player program control u ( . ) E T1 there exists a fisst- player control u ( * > E U 1 
such that the pair of controis u (f), u (t) (t < t < 6) takes system (I. 1) from the 
position X (Z) = w to the state x (6) E M. 

The set II?,* (t, -@) , i. e. the set of points w,can be dqfined in similar fvhion : for 
any second-player control u ( 9) E V2 * there exists a first-player control u( .) E U, 
such that the pair of controls u (t), ?I (t, x) takes system ( 1. i) from the position 
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5 (z) = w to the state 2 (9) E IF. 
in defining the absorption sets Ws (z, 6) and ws (Z, 6) we must take account Of the 

nonuniqueness of the solutions of system ( 1.1) generated by strategies from the C&MC% 
V2 and V,. III this connection the sets ws (‘G, $) and Ws (‘c, 6) can be defined as 
follows. The set *Ws (z, 8) (Ws (t, 6)) is the set of points w E EL for which the 
following condition is fulfilled: for any second-player approximation strategy TfOr any 
strategy u ( . ) E V,) there exists a first-player program control u ( - ) E U, such that 
the solutions of system (1.1) generated by the first-player program control U = u (t) 
and by the second-player approximation strategy (the suategy c‘ ft ) E V,) there exists 
a sofution x [ t] which satisfies the conditions r f tj = w, 5 I@] E M. 

Thus, the sets rY, (z, 4+), We (z, 6), l;li,* (‘c, e), Ers (z, 6) are the sets of initial 
states 5 [‘cl = w from which the second player cannot ensure his evading a hit in the 
set Mat the instant 6 by choosing his strategy from the classes V,, V2, V2*, V, , 
respectively. In similar fashion we can define the absorption sets S, (r, 61, S2 (Z, *), 
A’,* (z, 6) and S, (z, 6) consisting of all the initial positions zc [r] = w which the 
second player cannot use to ensure his evading a hit in M for all t E [r, 61 by choos- 
ing any strategy from the corresponding class. 

Let us describe briefly some of the absorption sets which we have constructed. We 
know that the system of sets w,(z, s) (to e z < 6) is strongly u -stable, and that the sys- 
tem of sets &(T, 6) (to < z f 6) is u -stable PI. This means that given fulfillment of 
the condition z,EW&, 6) (or Z&S&~, 6)) a first-player approximation strategy exue- 
ma1 in the system IV&, 6) ((S&r, e)) guarantees convergence of system (1.1) to the 
set M not later than at the instant 6 ; moreover, the inclusion q,&,(t,, @} is the neces- 
sary and sufficient condition whose fulfil~ent means that the homing game can be con- 
cluded by the instant 6 f7J. Thus, solution of the differential game in question reduces 
to the construction of the absorption set S&r, 6) or Wi (5, 8). (We note that the set Ws 

(z, 6) coincides to within a nonsingular linear transformation with the alternated inte- 
gral constructed in [3]‘). 

However. effective construction of these sets is generally a very difficult problem. It 
is therefore of interest to determine the conditions under which the set W,(z. 6) orS,(r, 6) 
coincides, let us say, with the set W,(T, 91; construction of this set is a much simpler 
matter. These matters are dealt with in 18, 93. The analysis of various absorption sets 
and the relationships between them also serves to clarify some problems of the structure 
of differentia1 games. ,For example, using the equation w~(T, 6) = W& 6) = W&T, 6) 

which we shall prove in the present paper, we can show that an evasion strategy generally 
cannot be approximated by continuous game position vector functions, i. e. by suategies 
from the Ciass V, or VP. An example illustrating this fact is given at the end of the 
present paper. 

2, Let us consider the sets WI (t, 81, Ws (z, 6) and R’s* (t, 6). We assert that 
these sets coincide. This assertion has the following meaning. If some position (z, w) 
is such that for any program control u (s ) E V, there exists a program conuol 
u ( -) E U1. which brings system (1.1) to p at the instant 6, then the second player 

CkmOt ensure his evading a hit in the set Mat the instant 6 if he chooses his controls 
from the class V2 or from the class v,i. On the other hand, if the position _(t, w} is 
such that, for example, the classVs contains some strategy u (t, a$ which insures the 
seed player agaimt the arrival of system (1. I) in M at the instant 6, then the classes 
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of controls VI and Vs* also contain second-player strategies which ensure his evasion 
of a hit at M at the instant 6 for any control chosen by the first player. 

Now let us prove the following theorem. 
Theorem 2.1. The sets WI (z, 6), W, (r,6) and W,* (z, fi) coincide, i. e. 

w,(%+)= Ws(%fi)= ws*(~,I!+)(-~<t~~<oc) @.I) 

Proof. We kgin by proving the equation 

w, (7, 6) = M/i* (% 6) (2.2) 

The inclusion E’s* (t, I?} c WI (t, @) is self-evident (since the set of controls 
Vs* contains the set of controls VJ. It remains for us to show that the in&t&w 

ws* (t, 6) 3 WI (Z, 6) holds. Let us suppose that this is not the case. Let there 
exist T and 6 (@ 2 .t) such that 

w,* (T, es> P w, (t, 6) (2.3) 

i.e. that there exists a point w* for which the relations 

w* e WI (7, a), 
are valid simu~t~~o~ly. 

The second condition of (2.4) has the following meaning: there eldsts a function 
V*(s) E Vs* such that for any program control u(.) CE U, the solution 

5 (t) (z IT1 = w*, z < t 2 6) 
generated by a pair of controls Y = u [ $1, u = II* (t, z) satisfies the condition 
z [a] Ef M. (WE note once again that the motion of system (1. I) in this case is unique 
by virtue of the Cardtheodory theorem PO] ) . 

We shali consider the sets V,and U1 as some sets in the space & k, 91. We note 

that these sets are convex, bounded, and weakiy compact in &, fz, 91. 
Now let us construct the following mapping of the set U,into itself: eaeh element 

u( -) E U, is associated with some set au c U1 (the elements of the set CD% are 
some program controls i$( a) E U,). We note that all the program controls are being 
considered in the interval Iz, S]. The set @, is defined as follows. 

Let u(*) E U, be an arbitrary element from the set of first-player program controls. 
By I [bf (z & t < 6) we denote the motion of system (1.1) from the initial state 
z;[z = I w+ generated by this program control u = u (tf and by the second player’s 
control v = v* (t, s). We denote the realization of the second-player connol V = 
=z v*,(t, z) computed along the motion II: = z, [t] by vu* [tl, i.e. 

u,* [tl = v* (t, 2, kl) (z < t < 6). 

It is not difficult to verify that V, *[ - I E VI. We now define the set (0, as the set of 
all first-player program controls rp(. ) E ti, which, on being paired with the program 

comrol v = v, * It1 take system (1. I) from the state z fz] = w* to the position 
z I@] E M. We note that since the point tuu* CZ w, (z, 6) (see (2.4)). it follows 
that the set cf>, is nonempty for all u( *f E VI. 

From the construction of the set Qu and from the properties of the Control Z.J = v* 

(t, z) we see that the condition (2.5) 

must be fulfilled for all u( 4) E I_!, . 
Thus, in order to arrive at a contradiction of conditions (a, 4) we need merely prove 
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the existence of a control u”( .) EU~ for which 

u”(*) E @I,” (2.6) 
We can show that there exists a control u”( .) E U, which satisfies (2.6) and thereby 

prove Eq. (2.2). 
To demonstrate the existence of such a control U*(S) we make use of the Bohnenbl~t- 

Karling fixed-point theorem ( PI], p. 496). 
Let us verify the fulfillment of the conditions of this theorem. First, we recall that 

the controls u(.)EU, are regarded as elements of the space L,[r, 61, and that the set 
U, is convex, weakly compact in LJz, +I , and bounded. We can show that the set 01, 
is convex for all u(.)rzUr , Let q~i(.) E CD,, F~(*)EQ. Then the control 

o&(t) = &Of + U - h) %?(t), 6 < h < 1 

also belongs to the set (P,, i.e. the pair of controls gift), v,ZIt] (t < t < #)‘brings sys- 
tem (I. 1) from ~171 = w, to M at the instant 6. In fact, in order to verify this we need 
merely write out the Cauchy formula 

u 8 

$1 [61= x (6, q w* + 1 x (6, q B (4 ‘pi (f) a -s x (6, q c (t) vu* [tl dt, i=l, 2 

1 5 

where X(t, z) is the fundamental matrix of the homogeneous system 

dxjdt = A ft)x 

Recalling that.M is convex and that sir@] E M, we obtain the inclusion 

x,.[fd = LI[~] + (i- h)z,[61 E M, 

in other words, the control q%(t) also belongs to the set 0,. 
Now let us verify the fulfillment of the following condition : if the sequence ~(0 )fU, 

converges weakly to u*(.) and if the sequence cp,(.) converges weakly to cp*(*); where 
~,&+)sI&, )1 = 1, 2,..., then cp*(=)~@,,. (The semicontinuity condition.) 

For simp~ci~, in proving dis~ntin~~ we shall denote the set (DUnby @*and 

v*u, [.]I Z,&] by ~,*[a], zn [=J. 

First we note that r,I+] is a sequence of uniformly bounded and equicontinuous func- 
tions, so that by the Arzela theorem ( [12], p. 236) we can isolate a uniformly convergent 
subsequence z,~[.], lim z,J. I= t* [ -1, where, clearly. z* [r] = 1~‘~. By virtue of the 

continuity of the vec’zfunction v*ft, z) in x and the uniform convergence of the sub- 

sequence zni[. J to s*r. 1, the realizations of the conuol v*(t, z) computed along the 
trajectories zRi [.] converge to u*(t, z*It]) at every point t E ft, S]. 

Now let us express the motions zRi I*] in the form 

5 ni [t] = \A (5) zni 161 dE, + i B (5) uni (6) dE - ‘s C (5) u* (t;, x,,~ 151) de 3 N.* (2.7) 
5 5 r 

In this equation we can also take the limit for a fixed t&, 61 as t + 00. On the 
left we obtain z*[t]. The first two terms in the right side of (2.7) have a limit by virtue 
of the uniform convergence of zni (-1 to z*f.] and the weak convergence of u,* (.) to 
u*I-]. This means that the thir: term in the right side also has a limit ; moreover, by 
condition (1.3), v*(& z) E (1 2nd G,f~l converges to U*(K z*&]) at every point 
E;&‘c, 61; this means that the limit of the integrand of the third term can be taken. We 
obtain 
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The integrand is summabb over [r, +?,I, so that almost everywhere in It, @I we have 

da!* [t] 
- = A(t)z* [t] + B(t).*(t) - C(t) v* (t, x* [t]) dt 

i2.8) 

2* [T] = w* 

i. e. &‘j is the unique (by virtue of the Caratheodory theorem) solution of system (1. I) 
cormsponding to the controls 1~ = u*ftj and Y = y*(t, X) ; the control &ftj = gift, z*[tj) 
is realized in this case. Now let us show that ?*(.)~@,..The condition cpni(.f&Dni 
means that 

x (‘3, @ w* + j x: (a, E) B (E) ‘p,, K) d& - [ X (@, 4) C K) “ii [4j 4 = Y,,~ E 114 (2.9) 
z : 

As i -+ CO the sequence Y,,% converges to some point, which belongs to this set by 
virtue of the Chlre of the set M . Hence, taking the limit in Eq. (2.9), we obtain 

8 0 
X(~,T~~* f ~~i~~4)B(f~tp*fE)4-S-~(8,f)C(41o:;.[41135=!/*E~ (2.10) ‘ + 7 

(The possibility of taking the limit in the first integral follows from the weak conver- 
gence of the sequence can(.) ; taking of the limit in the second integral can be justified 

in the same way as in (2.7) above). Relation (2.10) means that the control (9*( .) paired 
with the control &[.j takes system (1.1) from the position sIrI =i u”* to the state 
rl6j~M; hence, @( ;)6?D,*. The condition of semicontinuity has been proved. 

The last condition of the fixed-point theorem ( ~113, p.496) follows from the weak 
compacmess of the set U, and from its boundedness in Lp [‘F, Sj. Thus, all the c~di~~s 

of the fixed-point theorem have been satisfied, so that Eq, (2.2) has been proved. 
Let us take note of the principal arguments used to prove the coincidence of the set 

W&, 8) with the sets W,(t, @‘and ‘W:*(z, 4): Let ~(t, z) be an arbitrary control from 
the set v,. We know that every vector function v = dt, z) can be expressed as the 

limit of some vector functions V= v,(t, I), each of which belongs to the class V,* ; 
moreover, the convergence of u& z) to ;(t, z) is uniform on every bounded set ij C Ekel. 

Making use of this fact, we can prove that in rhe case where 

.+I = W*EW,(i, B) = W‘$% 6) 

the solutions generated by the control v = v(t, z) and by some control u(-)EU, there 

exists a solution which satisfies the conditions t[rj= w*, z[+j E M,i. e that w* E Wa(r- 

6) , and therefore W&y, 6) 3W, (T. 6) = Wg* PC. tN The inclusion W, (z. Blt=,_,_t~ S\ 

follows from the possibility of approximating the measurable program controls v(.)EVr 

by continuous program controls. We can therefore justify the validity of the equation 

WI@, 6) = Wdz, 81 = Wz’(z, 8) and of Theorem 2.1. 

3. in conclusion let us consider an example of a pursuit game in which the evasion 

strategy cannot be approximated by strategies from the classes v, and V?+. Let the 
motion of the system be described by the equations 

dy/dt = z - v, dz/dt = u (3.J 

Here ,g, z are the vectors of the Euclidean space Et ; the players’ ContIc& u and v 

are subject to the restrictions j@lj < p, l{vji < v, where P .> 0, v > Q are some constant 
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numbers ; the set A.f is the hyperplane y = 0. We note that Eqs (3.1) describe the process 
of pursuit of the inertialess point m, (a) by the material point of unit mass m(r) controlled 
by the force u ; the components of the vectors y are the differences between the corre- 
sponding coordinates of the points 4) ILL and rn(‘) ; the vector z is the velocity of the ma- 
terial point m (If. We know this problem does, in faot, contain an evasion strategy, i. e. 
that there exists some method of forming the control u which enables the second player 
to evade encounter with the point m(l). 

The authors of [6] proved the existence of such a strategy in the class of second-player 
controls which are formed with the aid of immediate information on the choice of the 
first-player control u[t] at each instant t 2 to. 

It can be shown that in this class evasion of encounter over an arbiuary large time 
interval is ensured by the approximation strategy defined by the function V = V,(t, y, z). 
This function Y = V*(t, y, Z) associates the position p = {t, I, 21 with the set of vectors 
V, satisfying the conditions 

(y, u*) < 0, (z, u*) = 07 Il%lf = v (3.2) 
Here the symbol (Y, Y) is the scalar product of the vectors; and u. Thus, the vector 

u* is orthogonal to the vector z, and the projection of the vector V* onto the vector y 
is nonpositive. Let us note the following fact. The function V = F*(t, g,z) isnot a 
single-valued continuous function of the position p = {t, Y, z}; if the vectors y and z 
are noncoiinear, then for y ir, 0 the set V&, y, z) contains two vectors ; for z = 0 the 
set IT&, y, z) consists of all possible vectors L’*. II L’* II = Y (Y, u*) < 0. 

Thus, in the example under consideration there exists some method of forming the 
second-player control which guarantees that the latter will be able to evade the pursuing 
player, Let us show that the second player cannot evade encounter by means of any stra- 
tegy from the class V, or Vo*. In fact, it is not difficult to verify that in this case for any 
initial game position p. = (to, zo] = C;to, yo, zo$ there exists a parameter value 6” < M 
such that the inclusion 

30 E W*(to, W (3.3) 
holds. 

But then, by virtue of Theorem 2.1. we also have the inclusions 

=o E ~~(~*,~D), =cl E ws*(fol @“) (3.4) 

which, by the definitions -of the absorntion sets Ws(z, 6) and U’s*@, ti),means that the pttr- 
sued player cannot evade encounter by choosing any strategy’ U( .) E vz or v(. ) E V,w. 
M~eover,en~o~ter occurs not later than at the program absorption instant t = 6”. 
Considerations similar to those used to prove Theorem 2.1 can also be used to show that 
the above situation continues to hold even if the second player chooses any control 
dtl = y(t, zftl, ultl), where 4t, x, u) is some continuous vector function 

Thus, the optimal or near-optimal second-player strategies cannot be sought in the 
class of continuous game position vector functions. We note , however, that in some cases 
the solution of an evasion problem can be approximated by means of the continuous stra- 
tegies u(t, 4. This class of evasion problems includes those differential games which 
conform to the conditions formulated in [ST 

The authors are grateful to N. N. Krasovskii for his interest in the present study and 
for his comments. 
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A game problem on the convergence of controlled objects by the instant t = 6 is con- 
sidered in a 8 xed time interval ft,, 61. It is assumed that the pursuing object is an iner- 
tial point andthat the pursued object is inertialess. The problem of constructing the pur- 
suer’s optimal minimax strategy is considered. This strategy ensures the minimax of the 
distance between the objects at a given instant. It is proved that the mixed strategy of 
special form (derived in [3]) which operates within the framework of the mathematical 
apparatus of differential equations in contingencies is such a strategy. 

1. Let us consider a differential game involving the two Objects r&i) and m@) moving 
in the horizontal plane qi&. The motion of the pursuing object m(i) (Yt, Ys) controlled 
by the first player is described by the system of equations * 

Yi = Y39 Yz' =: Y4, Ys’ = Us, y4’ = u* (1.1) 

where the control vector u = u* (ug, u4) satisfies the inequality 
(w:,‘[t] + U14 [t])“‘< p (1.2) 


